
NAG C Library Function Document

nag_pde_parab_1d_cd_ode (d03plc)

1 Purpose

nag_pde_parab_1d_cd_ode (d03plc) integrates a system of linear or nonlinear convection-diffusion
equations in one space dimension, with optional source terms and scope for coupled ordinary differential
equations (ODEs). The system must be posed in conservative form. Convection terms are discretised
using a sophisticated upwind scheme involving a user-supplied numerical flux function based on the
solution of a Riemann problem at each mesh point. The method of lines is employed to reduce the partial
differential equations (PDEs) to a system of ODEs, and the resulting system is solved using a backward
differentiation formula (BDF) method or a Theta method.

2 Specification

void nag_pde_parab_1d_cd_ode (Integer npde, double *ts, double tout,

void (*pdedef)(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double c[], double d[], double s[], Integer *ires,
Nag_Comm *comm),

void (*numflx)(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[], const double uright[],
double flux[], Integer *ires, Nag_Comm *comm, Nag_D03_Save *saved),

void (*bndary)(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires, Nag_Comm *comm),

double u[], Integer npts, const double x[], Integer ncode,

void (*odedef)(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double r[], Integer *ires,
Nag_Comm *comm),

Integer nxi, const double xi[], Integer neqn, const double rtol[],
const double atol[], Integer itol, Nag_NormType norm, Nag_LinAlgOption laopt,
const double algopt[], double rsave[], Integer lrsave, Integer isave[],
Integer lisave, Integer itask, Integer itrace, const char *outfile, Integer *ind,
Nag_Comm *comm, Nag_D03_Save *saved, NagError *fail)

3 Description

nag_pde_parab_1d_cd_ode (d03plc) integrates the system of convection-diffusion equations in conserva-
tive form:

Xnpde
j¼1

Pi;j

@Uj

@t
þ @F i

@x
¼ Ci

@Di

@x
þ Si; ð1Þ

or the hyperbolic convection-only system:

@Ui

@t
þ @F i

@x
¼ 0; ð2Þ

for i ¼ 1; 2; . . . ;npde; a � x � b; t � t0, where the vector U is the set of PDE solution values

Uðx; tÞ ¼ ½U1ðx; tÞ; . . . ; Unpdeðx; tÞ�T:

The optional coupled ODEs are of the general form

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.1

Riðt; V ; _VV ; �; U�; U�
x; U

�
t Þ ¼ 0; i ¼ 1; 2; . . . ; ncode; ð3Þ

where the vector V is the set of ODE solution values

V ðtÞ ¼ ½V 1ðtÞ; . . . ; V ncodeðtÞ�T;
_VV denotes its derivative with respect to time, and Ux is the spatial derivative of U .

In (1), Pi;j, Fi and Ci depend on x, t, U and V ; Di depends on x, t, U , Ux and V ; and Si depends on x,

t, U , V and linearly on _VV . Note that Pi;j, Fi, Ci and Si must not depend on any space derivatives, and

Pi;j, Fi, Ci and Di must not depend on any time derivatives. In terms of conservation laws, Fi,

Ci@Di=@x and Si are the convective flux, diffusion and source terms respectively.

In (3), � represents a vector of n� spatial coupling points at which the ODEs are coupled to the PDEs.

These points may or may not be equal to PDE spatial mesh points. U�, U�
x and U�

t are the functions U ,
Ux and Ut evaluated at these coupling points. Each Ri may depend only linearly on time derivatives.
Hence (3) may be written more precisely as

R ¼ L�M _VV �NU�
t ; ð4Þ

where R ¼ ½R1; . . . ; Rncode�T , L is a vector of length ncode, M is an ncode by ncode matrix, N is an

ncode by ðn� � npdeÞ matrix and the entries in L, M and N may depend on t, �, U�, U�
x and V . In

practice the user only needs to supply a vector of information to define the ODEs and not the matrices L,
M and N . (See Section 5 for the specification of the user-supplied procedure odedef.)

The integration in time is from t0 to tout, over the space interval a � x � b, where a ¼ x1 and b ¼ xnpts
are the leftmost and rightmost points of a user-defined mesh x1; x2; . . . ; xnpts. The initial values of the

functions Uðx; tÞ and V ðtÞ must be given at t ¼ t0.

The PDEs are approximated by a system of ODEs in time for the values of Ui at mesh points using a
spatial discretisation method similar to the central-difference scheme used in nag_pde_parab_1d_fd
(d03pcc), nag_pde_parab_1d_fd_ode (d03phc) and nag_pde_parab_1d_fd_ode_remesh (d03ppc), but with
the flux Fi replaced by a numerical flux, which is a representation of the flux taking into account the
direction of the flow of information at that point (i.e., the direction of the characteristics). Simple central
differencing of the numerical flux then becomes a sophisticated upwind scheme in which the correct
direction of upwinding is automatically achieved.

The numerical flux vector, F̂F i say, must be calculated by the user in terms of the left and right values of
the solution vector U (denoted by UL and UR respectively), at each mid-point of the mesh
xj�1

2
¼ ðxj�1 þ xjÞ=2 for j ¼ 2; 3; . . . ; npts. The left and right values are calculated by

nag_pde_parab_1d_cd_ode (d03plc) from two adjacent mesh points using a standard upwind technique

combined with a Van Leer slope-limiter (see LeVeque (1990)). The physically correct value for F̂F i is
derived from the solution of the Riemann problem given by

@Ui

@t
þ @F i

@y
¼ 0; ð5Þ

where y ¼ x� xj�1
2
, i.e., y ¼ 0 corresponds to x ¼ xj�1

2
, with discontinuous initial values U ¼ UL for

y < 0 and U ¼ UR for y > 0, using an approximate Riemann solver. This applies for either of the systems
(1) or (2); the numerical flux is independent of the functions Pi;j, Ci, Di and Si. A description of several

approximate Riemann solvers can be found in LeVeque (1990) and Berzins et al. (1989). Roe’s scheme
(Roe (1981)) is perhaps the easiest to understand and use, and a brief summary follows. Consider the
system of PDEs Ut þ Fx ¼ 0 or equivalently Ut þAUx ¼ 0. Provided the system is linear in U , i.e., the

Jacobian matrix A does not depend on U , the numerical flux F̂F is given by

F̂F ¼ 1
2
FL þ FRÞð � 1

2

Xnpde
k¼1

�kj�kjek; ð6Þ

where FL (FR) is the flux F calculated at the left (right) value of U , denoted by UL (UR); the �k are the
eigenvalues of A; the ek are the right eigenvectors of A; and the �k are defined by

d03plc NAG C Library Manual

d03plc.2 [NP3645/7]

UR � UL ¼
Xnpde
k¼1

�kek: ð7Þ

An example is given in Section 9 and in the nag_pde_parab_1d_cd (d03pfc) documentation.

If the system is nonlinear, Roe’s scheme requires that a linearized Jacobian is found (see Roe (1981)).

The functions Pi;j, Ci, Di and Si (but not Fi) must be specified in a function pdedef supplied by the user.

The numerical flux F̂F i must be supplied in a separate user-supplied function numflx. For problems in the
form (2), the actual argument d03plp may be used for pdedef (d03plp is included in the NAG C Library;
however, its name may be implementation-dependent: see the Users’ Note for your implementation for
details). d03plp sets the matrix with entries Pi;j to the identity matrix, and the functions Ci, Di and Si to

zero.

The boundary condition specification has sufficient flexibility to allow for different types of problems. For
second-order problems i.e., Di depending on Ux, a boundary condition is required for each PDE at both
boundaries for the problem to be well-posed. If there are no second-order terms present, then the
continuous PDE problem generally requires exactly one boundary conditions for each PDE, that is npde
boundary conditions in total. However, in common with most discretisation schemes for first-order
problems, a numerical boundary condition is required at the other boundary for each PDE. In order to be
consistent with the characteristic directions of the PDE system, the numerical boundary conditions must be
derived from the solution inside the domain in some manner (see below). Both types of boundary
conditions must be supplied by the user, i.e., a total of npde conditions at each boundary point.

The position of each boundary condition should be chosen with care. In simple terms, if information is
flowing into the domain then a physical boundary condition is required at that boundary, and a numerical
boundary condition is required at the other boundary. In many cases the boundary conditions are simple,
e.g., for the linear advection equation. In general the user should calculate the characteristics of the PDE
system and specify a physical boundary condition for each of the characteristic variables associated with
incoming characteristics, and a numerical boundary condition for each outgoing characteristic.

A common way of providing numerical boundary conditions is to extrapolate the characteristic variables
from the inside of the domain (note that when using banded matrix algebra the fixed bandwidth means that
only linear extrapolation is allowed, i.e., using information at just two interior points adjacent to the
boundary). For problems in which the solution is known to be uniform (in space) towards a boundary
during the period of integration then extrapolation is unnecessary; the numerical boundary condition can be
supplied as the known solution at the boundary. Another method of supplying numerical boundary
conditions involves the solution of the characteristic equations associated with the outgoing characteristics.
Examples of both methods can be found in Section 9 and in the nag_pde_parab_1d_cd (d03pfc)
documentation.

The boundary conditions must be specified in a function bndary (provided by the user) in the form

GL
i ðx; t; U; V ; _VV Þ ¼ 0 at x ¼ a; i ¼ 1; 2; . . . ;npde; ð8Þ

at the left-hand boundary, and

GR
i ðx; t; U; V ; _VV Þ ¼ 0 at x ¼ b; i ¼ 1; 2; . . . ;npde; ð9Þ

at the right-hand boundary.

Note that spatial derivatives at the boundary are not passed explicitly to the function bndary, but they can
be calculated using values of U at and adjacent to the boundaries if required. However, it should be noted
that instabilities may occur if such one-sided differencing opposes the characteristic direction at the
boundary.

The algebraic-differential equation system which is defined by the functions Ri must be specified in a
function odedef supplied by the user. The user must also specify the coupling points � (if any) in the array
xi.

The problem is subject to the following restrictions:

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.3

(i) In (1), _VV jðtÞ, for j ¼ 1; 2; . . . ; ncode, may only appear linearly in the functions Si, for

i ¼ 1; 2; . . . ;npde, with a similar restriction for GL
i and GR

i ;

(ii) Pi;j, Fi, Ci and Si must not depend on any space derivatives; and Pi;j, Fi, Ci and Di must not

depend on any time derivatives;

(iii) t0 < tout, so that integration is in the forward direction;

(iv) The evaluation of the terms Pi;j, CiDi and Si is done by calling the function pdedef at a point

approximately midway between each pair of mesh points in turn. Any discontinuities in these
functions must therefore be at one or more of the mesh points x1; x2; . . . ; xnpts;

(v) At least one of the functions Pi;j must be non-zero so that there is a time derivative present in the

PDE problem.

In total there are npde� nptsþ ncode ODEs in the time direction. This system is then integrated
forwards in time using a BDF or Theta method, optionally switching between Newton’s method and
functional iteration (see Berzins et al. (1989)).

For further details of the scheme, see Pennington and Berzins (1994) and the references therein.

4 References

Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems using
the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

Hirsch C (1990) Numerical Computation of Internal and External Flows, Volume 2: Computational

Methods for Inviscid and Viscous Flows John Wiley

LeVeque R J (1990) Numerical Methods for Conservation Laws Birkhäuser Verlag

Pennington S V and Berzins M (1994) New NAG Library software for first-order partial differential
equations ACM Trans. Math. Softw. 20 63–99

Roe P L (1981) Approximate Riemann solvers, parameter vectors, and difference schemes J. Comput.

Phys. 43 357–372

Sod G A (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws J. Comput. Phys. 27 1–31

5 Parameters

1: npde – Integer Input

On entry: the number of PDEs to be solved.

Constraint: npde � 1.

2: ts – double * Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in u. Normally ts ¼ tout.

Constraint: ts < tout.

3: tout – double Input

On entry: the final value of t to which the integration is to be carried out.

4: pdedef Function

pdedef must evaluate the functions Pi;j, Ci, Di and Si which partially define the system of PDEs.

Pi;j and Ci may depend on x, t, U and V ; Di may depend on x, t, U , Ux and V ; and Si may

depend on x, t, U , V and linearly on _VV . pdedef is called approximately midway between each pair
of mesh points in turn by nag_pde_parab_1d_cd_ode (d03plc). The actual argument d03plp may be

d03plc NAG C Library Manual

d03plc.4 [NP3645/7]

used for pdedef for problems in the form (2) (d03plp is included in the NAG C Library; however,
its name may be implementation-dependent: see the Users’ Note for your implementation for
details).

Its specification is:

void pdedef (Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[], const double vdot[],
double p[], double c[], double d[], double s[], Integer *ires,
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: u½npde� – const double Input

On entry: u½i� 1� contains the value of the component Uiðx; tÞ, for i ¼ 1; 2; . . . ;npde.

5: ux½npde� – const double Input

On entry: ux½i� 1� contains the value of the component @Uiðx; tÞ=@x, for
i ¼ 1; 2; . . . ; npde.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V iðtÞ, for i ¼ 1; 2; . . . ; ncode.

8: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _VV iðtÞ, for i ¼ 1; 2; . . . ; ncode.

Note: _VV iðtÞ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in Sj, for j ¼ 1; 2; . . . ; npde.

9: p½npde� npde� – double Output

Note: where Pði; jÞ appears in this document it refers to the array element

p½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On exit: Pði; jÞ must be set to the value of Pi;jðx; t; U; UxÞ, for i; j ¼ 1; 2; . . . ; npde.

10: c½npde� – double Output

On exit: c½i� 1� must be set to the value of Ciðx; t; U; V Þ, for i ¼ 1; 2; . . . ;npde.

11: d½npde� – double Output

On exit: d½i� 1� must be set to the value of Diðx; t; U; Ux; V Þ, for i ¼ 1; 2; . . . ;npde.

12: s½npde� – double Output

On exit: s½i� 1� must be set to the value of Siðx; t; U; V ; _VV Þ, for i ¼ 1; 2; . . . ;npde.

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.5

13: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd_ode (d03plc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

14: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

5: numflx Function

numflx must supply the numerical flux for each PDE given the left and right values of the solution
vector u. numflx is called approximately midway between each pair of mesh points in turn by
nag_pde_parab_1d_cd_ode (d03plc).

Its specification is:

void numflx (Integer npde, double t, double x, Integer ncode, const double v[],
const double uleft[], const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: x – double Input

On entry: the current value of the space variable x.

4: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

5: v½ncode� – const double Input

On entry: v½i� 1� contains the value of the component V iðtÞ, for i ¼ 1; 2; . . . ;ncode.

6: uleft½npde� – const double Input

On entry: uleft½i� 1� contains the left value of the component UiðxÞ, for
i ¼ 1; 2; . . . ; npde.

7: uright½npde� – const double Input

On entry: uright½i� 1� contains the right value of the component UiðxÞ, for
i ¼ 1; 2; . . . ; npde.

d03plc NAG C Library Manual

d03plc.6 [NP3645/7]

8: flux½npde� – double Output

On exit: flux½i� 1� must be set to the numerical flux F̂F i, for i ¼ 1; 2; . . . ;npde.

9: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd_ode (d03plc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

10: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

11: saved – Nag_D03_Save * Input/Output

On entry: contains the current state of saved data concerning the computation. If numflx
calls one of the approximate Riemann solvers nag_pde_parab_1d_euler_roe (d03puc),
nag_pde_parab_1d_euler_osher (d03pvc), nag_pde_parab_1d_euler_hll (d03pwc), or
nag_pde_parab_1d_euler_exact (d03pxc) then saved should be passed through unchanged
to that function.

On exit: the user should not change the components of saved.

6: bndary Function

bndary must evaluate the functions GL
i and GR

i which describe the physical and numerical
boundary conditions, as given by (8) and (9).

Its specification is:

void bndary (Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[], const double vdot[],
Integer ibnd, double g[], Integer *ires, Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.

3: t – double Input

On entry: the current value of the independent variable t.

4: x½npts� – const double Input

On entry: the mesh points in the spatial direction. x½0] corresponds to the left-hand
boundary, a, and x½npts� 1] corresponds to the right-hand boundary, b.

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.7

5: u½npde� npts� – const double Input

Note: where Uði; jÞ appears in this document it refers to the array element

u½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition in

your calling program.

On entry: Uði; jÞ contains the value of the component Uiðx; tÞ at x ¼ x½j� 1� for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; npts.

Note: if banded matrix algebra is to be used then the functions GL
i and GR

i may depend
on the value of Uiðx; tÞ at the boundary point and the two adjacent points only.

6: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

7: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V iðtÞ, for i ¼ 1; 2; . . . ; ncode.

8: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _VV iðtÞ, for i ¼ 1; 2; . . . ; ncode.

Note: _VV iðtÞ, for i ¼ 1; 2; . . . ; ncode, may only appear linearly in GL
j and GR

j , for

j ¼ 1; 2; . . . ; npde.

9: ibnd – Integer Input

On entry: specifies which boundary conditions are to be evaluated. If ibnd ¼ 0, then
bndary must evaluate the left-hand boundary condition at x ¼ a. If ibnd 6¼ 0, then
bndary must evaluate the right-hand boundary condition at x ¼ b.

10: g½npde� – double Output

On exit: g½i� 1� must contain the ith component of either GL
i or GR

i in (8) and (9),
depending on the value of ibnd, for i ¼ 1; 2; . . . ; npde.

11: ires – Integer * Input/Output

On entry: set to �1 or 1.

On exit: should usually remain unchanged. However, the user may set ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd_ode (d03plc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

12: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

7: u½neqn� – double Input/Output

On entry: the initial values of the dependent variables defined as follows:

d03plc NAG C Library Manual

d03plc.8 [NP3645/7]

u½npde� ðj� 1Þ þ i� 1� contain Uiðxj; t0Þ, for i ¼ 1; 2; . . . ;npde; j ¼ 1; 2; . . . ;npts and

u½npts� npdeþ k� 1� contain V kðt0Þ, for k ¼ 1; 2; . . . ; ncode.

On exit: the computed solution Uiðxj; tÞ, for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ;npts, and V kðtÞ, for
k ¼ 1; 2; . . . ; ncode, all evaluated at t ¼ ts.

8: npts – Integer Input

On entry: the number of mesh points in the interval ½a; b�.
Constraint: npts � 3.

9: x½npts� – const double Input

On entry: the mesh points in the space direction. x½0] must specify the left-hand boundary, a, and
x½npts� 1] must specify the right-hand boundary, b.

Constraint: x½0� < x½1� < . . . < x½npts� 1�.

10: ncode – Integer Input

On entry: the number of coupled ODE components.

Constraint: ncode � 0.

11: odedef Function

odedef must evaluate the functions R, which define the system of ODEs, as given in (4). If the user
wishes to compute the solution of a system of PDEs only (i.e., ncode ¼) 0, odedef must be the
dummy function d03pek. (d03pek is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

void odedef (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucp[],
const double ucpx[], const double ucpt[], double r[], Integer *ires,
Nag_Comm *comm)

1: npde – Integer Input

On entry: the number of PDEs in the system.

2: t – double Input

On entry: the current value of the independent variable t.

3: ncode – Integer Input

On entry: the number of coupled ODEs in the system.

4: v½ncode� – const double Input

On entry: v½i� 1� contains the value of component V iðtÞ, for i ¼ 1; 2; . . . ; ncode.

5: vdot½ncode� – const double Input

On entry: vdot½i� 1� contains the value of component _VV iðtÞ, for i ¼ 1; 2; . . . ; ncode.

6: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

7: xi½nxi� – const double Input

On entry: xi½i� 1� contains the ODE/PDE coupling point, �i, for i ¼ 1; 2; . . . ; nxi.

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.9

8: ucp½npde� nxi� – const double Input

Note: where UCPði; jÞ appears in this document it refers to the array element

ucp½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition

in your calling program.

On entry: UCPði; jÞ contains the value of Uiðx; tÞ at the coupling point x ¼ �j, for

i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

9: ucpx½npde� nxi� – const double Input

Note: where UCPXði; jÞ appears in this document it refers to the array element

ucpx½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition

in your calling program.

On entry: UCPXði; jÞ contains the value of ð@Uiðx; tÞÞ=ð@xÞ at the coupling point x ¼ �j,
for i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

10: ucpt½npde� nxi� – const double Input

Note: where UCPTði; jÞ appears in this document it refers to the array element

ucpt½npde� ðj� 1Þ þ i� 1�. We recommend using a #define to make the same definition

in your calling program.

On entry: UCPTði; jÞ contains the value of ð@UiÞ=ð@tÞ at the coupling point x ¼ �j, for
i ¼ 1; 2; . . . ; npde; j ¼ 1; 2; . . . ; nxi.

11: r½ncode� – double Output

On exit: r½i� 1� must contain the ith component of R, for i ¼ 1; 2; . . . ;ncode, where R is
defined as

R ¼ L�M _VV �NU�
t ; ð10Þ

or

R ¼ �M _VV �NU�
t : ð11Þ

The definition of r is determined by the input value of ires.

12: ires – Integer * Input/Output

On entry: the form of r that must be returned in the array r. If ires ¼ 1, then equation
(10) above must be used. If ires ¼ �1, then the equation (11) above must be used.

On exit: should usually remain unchanged. However, the user may reset ires to force the
integration function to take certain actions as described below:

ires ¼ 2

indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code ¼ NE USER STOP.

ires ¼ 3

indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. The user may wish to set ires ¼ 3 when a
physically meaningless input or output value has been generated. If the user
consecutively sets ires ¼ 3, then nag_pde_parab_1d_cd_ode (d03plc) returns to the
calling function with the error indicator set to fail.code ¼ NE FAILED DERIV.

13: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

d03plc NAG C Library Manual

d03plc.10 [NP3645/7]

12: nxi – Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

if ncode ¼ 0, nxi ¼ 0;
if ncode > 0, nxi � 0.

13: xi½dim� – const double Input

Note: the dimension, dim, of the array xi must be at least maxð1;nxiÞ.
On entry: xi½i� 1�, i ¼ 1; 2; . . . ;nxi, must be set to the ODE/PDE coupling points.

Constraint: x½0� � xi½0� < xi½1� < . . . < xi½nxi� 1� � x½npts� 1�.

14: neqn – Integer Input

On entry: the number of ODEs in the time direction.

Constraint: neqn ¼ npde� nptsþ ncode.

15: rtol½dim� – const double Input

Note: the dimension, dim, of the array rtol must be at least 1 when itol ¼ 1 or 2 and at least neqn
when itol ¼ 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol½i� 1� � 0 for all relevant i.

16: atol½dim� – const double Input

Note: the dimension, dim, of the array atol must be at least 1 when itol ¼ 1 or 3 and at least neqn
when itol ¼ 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol½i� 1� � 0 for all relevant i.

17: itol – Integer Input

On entry: a value to indicate the form of the local error test. If ei is the estimated local error for
u½i� 1�, i ¼ 1; 2; . . . ; neqn, and k k denotes the norm, then the error test to be satisfied is
keik < 1:0. itol indicates to nag_pde_parab_1d_cd_ode (d03plc) whether to interpret either or both
of rtol and atol as a vector or scalar in the formation of the weights wi used in the calculation of the
norm (see the description of the parameter norm below):

itol rtol atol wi

1 scalar scalar rtol½0� � ju½i� 1�j þ atol½0�
2 scalar vector rtol½0� � ju½i� 1�j þ atol½i� 1�
3 vector scalar rtol½i� 1� � ju½i� 1�j þ atol½0�
4 vector vector rtol½i� 1� � ju½i� 1�j þ atol½i� 1�

Constraint: 1 � itol � 4.

18: norm – Nag_NormType Input

On entry: the type of norm to be used. Two options are available:

norm ¼ Nag OneNorm

Averaged L1 norm.

norm ¼ Nag TwoNorm

Averaged L2 norm.

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.11

If Unorm denotes the norm of the vector u of length neqn, then for the averaged L1 norm

Unorm ¼ 1

neqn

Xneqn
i¼1

u½i� 1�=wi;

and for the averaged L2 norm

Unorm ¼

ffi
1

neqn

Xneqn
i¼1

ðu½i� 1�=wiÞ2
vuut :

See the description of parameter itol for the formulation of the weight vector w.

Constraint: norm ¼ Nag OneNorm or Nag TwoNorm.

19: laopt – Nag_LinAlgOption Input

On entry: the type of matrix algebra required. The possible choices are:

laopt ¼ Nag LinAlgFull

Full matrix methods to be used.

laopt ¼ Nag LinAlgBand

Banded matrix methods to be used.

laopt ¼ Nag LinAlgSparse

Sparse matrix methods to be used.

Constraint: laopt ¼ Nag LinAlgFull, Nag LinAlgBand or Nag LinAlgSparse.

Note: the user is recommended to use the banded option when no coupled ODEs are present
(ncode ¼ 0). Also, the banded option should not be used if the boundary conditions involve
solution components at points other than the boundary and the immediately adjacent two points

20: algopt½30� – const double Input

On entry: algopt may be set to control various options available in the integrator. If the user wishes
to employ all the default options, then algopt½0] should be set to 0.0. Default values will also be
used for any other elements of algopt set to zero. The permissible values, default values, and
meanings are as follows:

algopt½0] selects the ODE integration method to be used. If algopt½0� ¼ 1:0, a BDF method is used
and if algopt½0� ¼ 2:0, a Theta method is used.

The default is algopt½0� ¼ 1:0.

If algopt½0� ¼ 2:0, then algopt½i�, for i ¼ 1; 2; 3 are not used.

algopt½1] specifies the maximum order of the BDF integration formula to be used. algopt½1] may
be 1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt½1� ¼ 5:0.

algopt½2] specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt½2� ¼ 1:0 a modified Newton iteration is used and if
algopt½2� ¼ 2:0 a functional iteration method is used. If functional iteration is selected and the
integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration.
The default value is algopt½2� ¼ 1:0.

algopt½3] specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as

Pi;j ¼ 0:0, for j ¼ 1; 2; . . . ; npde for some i or when there is no _VV iðtÞ dependence in the coupled

ODE system. If algopt½3� ¼ 1:0, then the Petzold test is used. If algopt½3� ¼ 2:0, then the Petzold
test is not used. The default value is algopt½3� ¼ 1:0.

If algopt½0� ¼ 1:0, then algopt½i�, for i ¼ 4; 5; 6 are not used.

algopt½4], specifies the value of Theta to be used in the Theta integration method.

d03plc NAG C Library Manual

d03plc.12 [NP3645/7]

0:51 � algopt½4� � 0:99. The default value is algopt½4� ¼ 0:55.

algopt½5] specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt½5� ¼ 1:0, a modified Newton iteration is used and if
algopt½5� ¼ 2:0, a functional iteration method is used. The default value is algopt½5� ¼ 1:0.

algopt½6] specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If algopt½6� ¼ 1:0,
then switching is allowed and if algopt½6� ¼ 2:0, then switching is not allowed. The default value is
algopt½6� ¼ 1:0.

algopt½10] specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the parameter itask. If algopt½0� 6¼ 0:0, a value of 0.0
for algopt½10], say, should be specified even if itask subsequently specifies that tcrit will not be
used.

algopt½11] specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, algopt½11] should be set to 0.0.

algopt½12] specifies the maximum absolute step size to be allowed in the time integration. If this
option is not required, algopt½12] should be set to 0.0.

algopt½13] specifies the initial step size to be attempted by the integrator. If algopt½13� ¼ 0:0, then
the initial step size is calculated internally.

algopt½14] specifies the maximum number of steps to be attempted by the integrator in any one call.
If algopt½14� ¼ 0:0, then no limit is imposed.

algopt½22] specifies what method is to be used to solve the nonlinear equations at the initial point to

initialise the values of U , Ut, V and _VV . If algopt½22� ¼ 1:0, a modified Newton iteration is used
and if algopt½22� ¼ 2:0, functional iteration is used. The default value is algopt½22� ¼ 1:0.

algopt½28] and algopt½29] are used only for the sparse matrix algebra option, i.e.,
laopt ¼ Nag LinAlgSparse.

algopt½28] governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0:0 < algopt½28� < 1:0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt½28] lies outside the range then
the default value is used. If the functions regard the Jacobian matrix as numerically singular, then
increasing algopt½28] towards 1.0 may help, but at the cost of increased fill-in. The default value is
algopt½28� ¼ 0:1.

algopt½29] is used as the relative pivot threshold during subsequent Jacobian decompositions (see
algopt½28]) below which an internal error is invoked. algopt½29] must be greater than zero,
otherwise the default value is used. If algopt½29] is greater than 1.0 no check is made on the pivot
size, and this may be a necessary option if the Jacobian matrix is found to be numerically singular
(see algopt½28]). The default value is algopt½29� ¼ 0:0001.

21: rsave½lrsave� – double Input/Output

On entry: if ind ¼ 0, rsave need not be set. If ind ¼ 1 then it must be unchanged from the
previous call to the function.

On exit: contains information about the iteration required for subsequent calls.

22: lrsave – Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag_pde_parab_1d_cd_ode (d03plc) is called. Its size depends on the type of matrix algebra
selected:

if laopt ¼ Nag LinAlgFull, lrsave � neqn� neqnþ neqnþ nwkresþ lenode;

if laopt ¼ Nag LinAlgBand, lrsave � ð3�mluþ 1Þ � neqnþ nwkresþ lenode;

if laopt ¼ Nag LinAlgSparse, lrsave � 4� neqnþ 11� neqn=2þ 1þ nwkresþ lenode,

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.13

where mlu ¼ the lower or upper half bandwidths, and
mlu ¼ 3� npde� 1, for PDE problems only, and
mlu ¼ neqn� 1, for coupled PDE/ODE problems.

nwkres ¼ npde� ð2� nptsþ 6� nxiþ 3� npdeþ 26Þ þ nxiþ ncodeþ 7� nptsþ 2,
when ncode > 0 and nxi > 0, and
nwkres ¼ npde� ð2� nptsþ 3� npdeþ 32Þ þ ncodeþ 7� nptsþ 3, when ncode > 0
and nxi ¼ 0, and
nwkres ¼ npde� ð2� nptsþ 3� npdeþ 32Þ þ 7� nptsþ 4, when ncode ¼ 0.

lenode ¼ ð6þ intðalgopt½1�ÞÞ � neqnþ 50, when the BDF method is used, and
lenode ¼ 9� neqnþ 50, when the Theta method is used.

Note: when laopt ¼ Nag LinAlgSparse, the value of lrsave may be too small when supplied to the

integrator. An estimate of the minimum size of lrsave is printed on the current error message unit if

itrace > 0 and the function returns with fail.code ¼ NE INT 2.

23: isave½lisave� – Integer Input/Output

On exit: the following components of the array isave concern the efficiency of the integration.

isave½0] contains the number of steps taken in time.

isave½1] contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation of
the functions in the boundary conditions.

isave½2] contains the number of Jacobian evaluations performed by the time integrator.

isave½3] contains the order of the BDF method last used in the time integration, if applicable. When
the Theta method is used isave½3] contains no useful information.

isave½4] contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution using the
LU decomposition of the Jacobian matrix.

24: lisave – Integer Input

On entry: the dimension of the array isave. Its size depends on the type of matrix algebra selected:

if laopt ¼ Nag LinAlgFull, lisave � 24

if laopt ¼ Nag LinAlgBand, lisave � neqnþ 24

if laopt ¼ Nag LinAlgSparse, lisave � 25� neqnþ 24

Note: when laopt ¼ Nag LinAlgSparse, the value of lisave may be too small when supplied to the

integrator. An estimate of the minimum size of lisave is printed on the current error message unit if

itrace > 0 and the function returns with fail.code ¼ NE INT 2.

25: itask – Integer Input

On entry: the task to be performed by the ODE integrator. The permitted values of itask and their
meanings are detailed below:

itask ¼ 1

normal computation of output values u at t ¼ tout (by overshooting and interpolating).

itask ¼ 2

take one step in the time direction and return.

itask ¼ 3

stop at first internal integration point at or beyond t ¼ tout.

d03plc NAG C Library Manual

d03plc.14 [NP3645/7]

itask ¼ 4

normal computation of output values u at t ¼ tout but without overshooting t ¼ tcrit where
tcrit is described under the parameter algopt.

itask ¼ 5

take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter algopt.

Constraint: 1 � itask � 5.

26: itrace – Integer Input

stop at first internal integration point at or beyond t.

On entry: the level of trace information required from nag_pde_parab_1d_cd_ode (d03plc) and the
underlying ODE solver. itrace may take the value �1, 0, 1, 2, or 3. If itrace < �1, then �1 is
assumed and similarly if itrace > 3, then 3 is assumed. If itrace ¼ �1, no output is generated. If
itrace ¼ 0, only warning messages from the PDE solver are printed. If itrace > 0, then output
from the underlying ODE solver is printed. This output contains details of Jacobian entries, the
nonlinear iteration and the time integration during the computation of the ODE system. The
advisory messages are given in greater detail as itrace increases.

27: outfile – char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

28: ind – Integer * Input/Output

On entry: ind must be set to 0 or 1.

ind ¼ 0

starts or restarts the integration in time.

ind ¼ 1

continues the integration after an earlier exit from the function. In this case, only the
parameters tout and fail should be reset between calls to nag_pde_parab_1d_cd_ode
(d03plc).

Constraint: 0 � ind � 1.

On exit: ind ¼ 1.

29: comm – NAG_Comm * Input/Output

The NAG communication parameter (see the Essential Introduction).

30: saved – Nag_D03_Save * Input/Output

Note: saved is a NAG defined structure. See Section 2.2.1.1 of the Essential Introduction.

On entry: if the current call to nag_pde_parab_1d_cd_ode (d03plc) follows a previous call to a
Chapter d03 function then saved must contain the unchanged value output from that previous call.

On exit: data to be passed unchanged to any subsequent call to a Chapter d03 function.

31: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.15

6 Error Indicators and Warnings

NE_INT

ires set to an invalid value in call to pdedef, numflx, bndary, or odedef.

On entry, nxi ¼ hvaluei.
Constraint: nxi � 0.

On entry, npde ¼ hvaluei.
Constraint: npde � 1.

On entry, npts ¼ hvaluei.
Constraint: npts � 3.

On entry, ind is not equal to 0 or 1: ind ¼ hvaluei.
On entry, itol is not equal to 1, 2, 3, or 4: itol ¼ hvaluei.
On entry, itask is not equal to 1, 2, 3, 4 or 5: itask ¼ hvaluei.
On entry, ncode ¼ hvaluei.
Constraint: ncode � 0.

On entry, ncode ¼ 0, but nxi is not equal to 0: nxi ¼ hvaluei.

NE_INT_2

On entry, lisave is too small: lisave ¼ hvaluei. Minimum possible dimension: hvaluei.
When using the sparse option lisave or lrsave is too small: lisave ¼ hvaluei, lrsave ¼ hvaluei.
On entry, corresponding elements atol½i� 1� and rtol½j� 1� are both zero. i ¼ hvaluei, j ¼ hvaluei.
On entry, lrsave is too small: lrsave ¼ hvaluei. Minimum possible dimension: hvaluei.

NE_INT_4

On entry, neqn is not equal to npde� nptsþ ncode: neqn ¼ hvaluei, npde ¼ hvaluei,
npts ¼ hvaluei, ncode ¼ hvaluei.

NE_ENUM_INT

On entry, laopt ¼ hvaluei, ncode ¼ hvaluei.
Constraint: laopt ¼ Nag LinAlgFull, Nag LinAlgBand or Nag LinAlgSparse.

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_FAILED_DERIV

In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This could
be due to user setting ires ¼ 3 in pdedef, numflx, bndary, or odedef.

NE_FAILED_START

atol and rtol were too small to start integration.

NE_FAILED_STEP

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts ¼ hvaluei.
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts ¼ hvaluei.

d03plc NAG C Library Manual

d03plc.16 [NP3645/7]

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt½14� has been exceeded.
algopt½14� ¼ hvaluei.

NE_NOT_STRICTLY_INCREASING

On entry xi½i� � xi½i� 1�: i ¼ hvaluei, xi½i� ¼ hvaluei, xi½i� 1� ¼ hvaluei.
On entry, mesh points x badly ordered: i ¼ hvaluei, x½i� 1� ¼ hvaluei j ¼ hvaluei,
x½j� 1� ¼ hvaluei.

NE_REAL_2

On entry, at least one point in xi lies outside ½x½0�; x½npts� 1��: x½0� ¼ hvaluei,
x½npts� 1� ¼ hvaluei.
On entry, tout� ts is too small: tout ¼ hvaluei, ts ¼ hvaluei.
On entry, tout � ts: tout ¼ hvaluei, ts ¼ hvaluei.

NE_REAL_ARRAY

On entry, rtol½i� 1� < 0:0: i ¼ hvaluei, rtol½i� 1� ¼ hvaluei.
On entry, atol½i� 1� < 0:0: i ¼ hvaluei, atol½i� 1� ¼ hvaluei.

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

The functions P , D, or C appear to depend on time derivatives.

NE_USER_STOP

In evaluating residual of ODE system, ires ¼ 2 has been set in pdedef, numflx, bndary, or odedef.
Integration is successful as far as ts: ts ¼ hvaluei.

NE_ZERO_WTS

Zero error weights encountered during time integration.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_NOT_WRITE_FILE

Cannot open file hvaluei for writing.

NE_NOT_CLOSE_FILE

Cannot close file hvaluei.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.17

7 Accuracy

The function controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so the
accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of varying
the accuracy parameters, atol and rtol.

8 Further Comments

The function is designed to solve systems of PDEs in conservative form, with optional source terms which
are independent of space derivatives, and optional second-order diffusion terms. The use of the function to
solve systems which are not naturally in this form is discouraged, and users are advised to use one of the
central-difference schemes for such problems.

Users should be aware of the stability limitations for hyperbolic PDEs. For most problems with small
error tolerances the ODE integrator does not attempt unstable time steps, but in some cases a maximum
time step should be imposed using algopt½12]. It is worth experimenting with this parameter, particularly
if the integration appears to progress unrealistically fast (with large time steps). Setting the maximum time
step to the minimum mesh size is a safe measure, although in some cases this may be too restrictive.

Problems with source terms should be treated with caution, as it is known that for large source terms stable
and reasonable looking solutions can be obtained which are in fact incorrect, exhibiting non-physical
speeds of propagation of discontinuities (typically one spatial mesh point per time step). It is essential to
employ a very fine mesh for problems with source terms and discontinuities, and to check for non-physical
propagation speeds by comparing results for different mesh sizes. Further details and an example can be
found in Pennington and Berzins (1994).

The time taken depends on the complexity of the system and on the accuracy requested. For a given
system and a fixed accuracy it is approximately proportional to neqn.

9 Example

For this function two examples are presented, with a main program and two example problems given in the
functions ex1 and ex2.

Example 1 (ex1)

This example is a simple first-order system with coupled ODEs arising from the use of the characteristic
equations for the numerical boundary conditions.

The PDEs are

@U1

@t
þ @U1

@x
þ 2

@U2

@x
¼ 0;

@U2

@t
þ 2

@U1

@x
þ @U2

@x
¼ 0;

for x 2 ½0; 1� and t � 0.

The PDEs have an exact solution given by

U1ðx; tÞ ¼ fðx� 3tÞ þ gðxþ tÞ; U2ðx; tÞ ¼ fðx� 3tÞ � gðxþ tÞ;
where fðzÞ ¼ expð�zÞ sinð2�zÞ, gðzÞ ¼ expð�2�zÞ cosð2�zÞ.
The initial conditions are given by the exact solution.

The characteristic variables are W 1 ¼ U1 � U2 and W 2 ¼ U1 þ U2, corresponding to the characteristics
given by dx=dt ¼ �1 and dx=dt ¼ 3 respectively. Hence we require a physical boundary condition for
W 2 at the left-hand boundary and for W 1 at the right-hand boundary (corresponding to the incoming
characteristics), and a numerical boundary condition for W 1 at the left-hand boundary and for W 2 at the
right-hand boundary (outgoing characteristics).

d03plc NAG C Library Manual

d03plc.18 [NP3645/7]

The physical boundary conditions are obtained from the exact solution, and the numerical boundary
conditions are supplied in the form of the characteristic equations for the outgoing characteristics, that is

@W 1

@t
� @W 1

@x
¼ 0

at the left-hand boundary, and

@W 2

@t
þ 3

@W 2

@x
¼ 0

at the right-hand boundary.

In order to specify these boundary conditions, two ODE variables V 1 and V 2 are introduced, defined by

V 1ðtÞ ¼ W 1ð0; tÞ ¼ U1ð0; tÞ � U2ð0; tÞ;
V 2ðtÞ ¼ W 2ð1; tÞ ¼ U1ð1; tÞ þ U2ð1; tÞ:

The coupling points are therefore at x ¼ 0 and x ¼ 1.

The numerical boundary conditions are now

_VV 1 �
@W 1

@x
¼ 0

at the left-hand boundary, and

_VV 2 þ 3
@W 2

@x
¼ 0

at the right-hand boundary.

The spatial derivatives are evaluated at the appropriate boundary points in the bndary function using one-
sided differences (into the domain and therefore consistent with the characteristic directions).

The numerical flux is calculated using Roe’s approximate Riemann solver (see Section 3 for details),
giving

F̂F ¼ 1
2

3U1L � U1R þ 3U2L þ U2R

3U1L þ U1R þ 3U2L � U2R

� �
:

Example 2 (ex2)

This example is the standard shock-tube test problem proposed by Sod (1978) for the Euler equations of
gas dynamics. The problem models the flow of a gas in a long tube following the sudden breakdown of a
diaphragm separating two initial gas states at different pressures and densities. There is an exact solution
to this problem which is not included explicitly as the calculation is quite lengthy. The PDEs are

@�

@t
þ @m

@x
¼ 0;

@m

@t
þ @

@x
m2

� þ ð� � 1Þ e� m2

2�

�� ��
¼ 0;

@e

@t
þ @

@x
me
� þ m

� ð� � 1Þ e� m2

2�

�� ��
¼ 0;

where � is the density; m is the momentum, such that m ¼ �u, where u is the velocity; e is the specific
energy; and � is the (constant) ratio of specific heats. The pressure p is given by

p ¼ ð� � 1Þ e� �u2

2

��
:

The solution domain is 0 � x � 1 for 0 < t � 0:2, with the initial discontinuity at x ¼ 0:5, and initial
conditions

�ðx; 0Þ ¼ 1; mðx; 0Þ ¼ 0; eðx; 0Þ ¼ 2:5; for x < 0:5;
�ðx; 0Þ ¼ 0:125; mðx; 0Þ ¼ 0; eðx; 0Þ ¼ 0:25; for x > 0:5:

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.19

The solution is uniform and constant at both boundaries for the spatial domain and time of integration
stated, and hence the physical and numerical boundary conditions are indistinguishable and are both given
by the initial conditions above. The evaluation of the numerical flux for the Euler equations is not trivial;
the Roe algorithm given in Section 3 can not be used directly as the Jacobian is nonlinear. However, an
algorithm is available using the parameter-vector method (see Roe (1981)), and this is provided in the
utility function nag_pde_parab_1d_euler_roe (d03puc). An alternative Approxiate Riemann Solver using
Osher’s scheme is provided in nag_pde_parab_1d_euler_osher (d03pvc). Either
nag_pde_parab_1d_euler_roe (d03puc) or nag_pde_parab_1d_euler_osher (d03pvc) can be called from
the user-supplied numflx function.

9.1 Program Text

/* nag_pde_parab_1d_cd_ode (d03plc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd03.h>
#include <nagx01.h>
#include <math.h>

/* Structure to communicate with user-supplied function arguments */

struct user
{

double elo, ero, gamma, rlo, rro;
};

static void pdedef(Integer, double, double, const double[],
const double[], Integer, const double[],
const double[], double[], double[], double[],
double[], Integer *, Nag_Comm *);

static void bndry1(Integer, Integer, double, const double[],
const double[], Integer, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void bndry2(Integer, Integer, double, const double[],
const double[], Integer, const double[],
const double[], Integer, double[], Integer *,
Nag_Comm *);

static void nmflx1(Integer, double, double, Integer, const double[],
const double[], const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

static void nmflx2(Integer, double, double, Integer, const double[],
const double[], const double[], double[], Integer *,
Nag_Comm *, Nag_D03_Save *);

static void odedef(Integer, double, Integer, const double[], const double[],
Integer, const double[], const double[], const double [],
const double[], double[], Integer *, Nag_Comm *);

static void init1(double, double *, Integer, double *, Integer, Integer);

static void init2(Integer, Integer, double *, double *, Nag_Comm *);

static void exact(double, double *, Integer, const double *, Integer);

static int ex1(void), ex2(void);

d03plc NAG C Library Manual

d03plc.20 [NP3645/7]

#define P(I,J) p[npde*((J)-1)+(I)-1]
#define UCP(I,J) ucp[npde*((J)-1)+(I)-1]
#define UE(I,J) ue[npde*((J)-1)+(I)-1]
#define U(I,J) u[npde*((J)-1)+(I)-1]
#define UOUT(I,J) uout[npde*((J)-1)+(I)-1]

int main(void)
{

Vprintf("d03plc Example Program Results\n");
ex1();
ex2();
return 0;

}

int ex1(void)
{

const Integer npde=2, npts=141, ncode=2, nxi=2, neqn=npde*npts+ncode,
outpts=8, lrsave=11000, lisave=15700;

double tout, ts;
Integer exit_status, i, ii, ind, itask, itol, itrace, j, nop;
double *algopt=0, *atol=0, *rsave=0, *rtol=0, *u=0, *ue=0,

*uout=0, *x=0, *xi=0, *xout=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(neqn, double)) ||
!(ue = NAG_ALLOC(npde*outpts, double)) ||
!(uout = NAG_ALLOC(npde*outpts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xi = NAG_ALLOC(nxi, double)) ||
!(xout = NAG_ALLOC(outpts, double)) ||
!(isave = NAG_ALLOC(lisave, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf("\n\nExample 1\n\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;
itol = 1;
atol[0] = 1e-5;
rtol[0] = 2.5e-4;

Vprintf(" npts = %4ld", npts);
Vprintf(" atol = %10.3e", atol[0]);
Vprintf(" rtol = %10.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);
xi[0] = 0.0;
xi[1] = 1.0;

/* Set initial values */

ts = 0.0;
init1(ts, u, npde, x, npts, ncode);

ind = 0;

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.21

itask = 1;

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] = 1.0;

/* Sparse matrix algebra parameters */

algopt[28] = 0.1;
algopt[29] = 1.1;

tout = 0.5;
d03plc(npde, &ts, tout, pdedef, nmflx1, bndry1, u, npts, x,

ncode, odedef, nxi, xi, neqn, rtol, atol, itol, Nag_OneNorm,
Nag_LinAlgSparse, algopt, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03plc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Set output points */

nop = 0;
for (i = 0; i < npts; i += 20)

{
xout[nop] = x[i];
++nop;

}

Vprintf(" t = %6.3f\n\n", ts);
Vprintf(" x Approx u1 Exact u1");
Vprintf(" Approx u2 Exact u2\n\n");

for (i = 1; i <= nop; ++i)
{

ii = (i-1)*20+1;
j = npde*(ii - 1);
UOUT(1, i) = u[j];
UOUT(2, i) = u[j + 1];

}

/* Check against exact solution */

exact(tout, ue, npde, xout, nop);
for (i = 1; i <= nop; ++i)

{
Vprintf(" %10.4f", xout[i-1]);
Vprintf(" %10.4f", UOUT(1,i));
Vprintf(" %10.4f", UE(1,i));
Vprintf(" %10.4f", UOUT(2,i));
Vprintf(" %10.4f\n", UE(2,i));

}
Vprintf("\n");

Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);
if (ue) NAG_FREE(ue);

d03plc NAG C Library Manual

d03plc.22 [NP3645/7]

if (uout) NAG_FREE(uout);
if (x) NAG_FREE(x);
if (xi) NAG_FREE(xi);
if (xout) NAG_FREE(xout);
if (isave) NAG_FREE(isave);

return exit_status;

}

static void pdedef(Integer npde, double t, double x, const double u[],
const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double c[], double d[],
double s[], Integer *ires, Nag_Comm *comm)

{
Integer i, j;

for (i = 1; i <= npde; ++i)
{

c[i-1] = 1.0;
d[i-1] = 0.0;
s[i-1] = 0.0;
for (j = 1; j <= npde; ++j)

{
if (i == j)

{
P(i, j) = 1.0;

} else {
P(i, j) = 0.0;

}
}

}
return;

}

static void bndry1(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
double dudx;
double *ue=0;

/* Allocate memory */

if (!(ue = NAG_ALLOC(npde, double)))
{

Vprintf("Allocation failure\n");
goto END;

}

if (ibnd == 0) {
exact(t, ue, npde, &x[0], 1);
g[0] = U(1, 1) + U(2, 1) - UE(1, 1) - UE(2, 1);
dudx = (U(1, 2) - U(2, 2) - U(1, 1) + U(2, 1))/(x[1] - x[0]);
g[1] = vdot[0] - dudx;

} else {
exact(t, ue, npde, &x[npts-1], 1);
g[0] = U(1,npts) - U(2,npts) - UE(1, 1) + UE(2, 1);
dudx = (U(1,npts) + U(2,npts) - U(1,npts-1) -

U(2,npts-1))/(x[npts-1] - x[npts-2]);
g[1] = vdot[1] + 3.0*dudx;

}
END:
if (ue) NAG_FREE(ue);

return;
}

static void nmflx1(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[],

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.23

const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
flux[0] = 0.5*(3.0*uleft[0] - uright[0] + 3.0*uleft[1] + uright[1]);
flux[1] = 0.5*(3.0*uleft[0] + uright[0] + 3.0*uleft[1] - uright[1]);
return;

}

static void odedef(Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[],
const double ucp[], const double ucpx[],
const double ucpt[], double r[], Integer *ires,
Nag_Comm *comm)

{
if (*ires == -1)

{
r[0] = 0.0;
r[1] = 0.0;

} else {
r[0] = v[0] - UCP(1, 1) + UCP(2, 1);
r[1] = v[1] - UCP(1, 2) - UCP(2, 2);

}
return;

}

static void exact(double t, double *u, Integer npde,
const double *x, Integer npts)

{
/* Exact solution (for comparison and b.c. purposes) */

double f, g;
Integer i;

for (i = 1; i <= npts; ++i)
{

f = exp(nag_pi*(x[i-1] - 3.0*t))*sin(2.0*nag_pi*(x[i-1] - 3.0*t));
g = exp(-2.0*nag_pi*(x[i-1] + t))*cos(2.0*nag_pi*(x[i-1] + t));
U(1, i) = f + g;
U(2, i) = f - g;

}
return;

}

static void init1(double t, double *u, Integer npde, double *x,
Integer npts, Integer ncode)

{
/* Initial solution */

double f, g;
Integer i, j, neqn;

neqn = npde*npts+ncode;
j = 0;
for (i = 0; i < npts; ++i)

{
f = exp(nag_pi*(x[i] - 3.0*t))*sin(2.0*nag_pi*(x[i] - 3.0*t));
g = exp(-2.0*nag_pi*(x[i] + t))*cos(2.0*nag_pi*(x[i] + t));
u[j] = f + g;
u[j+1] = f - g;
j += 2;

}
u[neqn-2] = u[0] - u[1];
u[neqn-1] = u[neqn-3] + u[neqn-4];

return;
}

int ex2(void)
{

const Integer npde=3, npts=141, ncode=0, nxi=0, neqn=npde*npts+ncode,
outpts=8, lisave=neqn+24, lrsave=16392;

d03plc NAG C Library Manual

d03plc.24 [NP3645/7]

double d, p, tout, ts, v;
Integer exit_status, i, ind, it, itask, itol, itrace, k;
double *algopt=0, *atol=0, *rsave=0, *rtol=0, *u=0, *ue=0,

*x=0, *xi=0;
Integer *isave=0;
NagError fail;
Nag_Comm comm;
Nag_D03_Save saved;
struct user data;

/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
!(atol = NAG_ALLOC(1, double)) ||
!(rsave = NAG_ALLOC(lrsave, double)) ||
!(rtol = NAG_ALLOC(1, double)) ||
!(u = NAG_ALLOC(npde*npts, double)) ||
!(ue = NAG_ALLOC(npde*outpts, double)) ||
!(x = NAG_ALLOC(npts, double)) ||
!(xi = NAG_ALLOC(1, double)) ||
!(isave = NAG_ALLOC(447, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

Vprintf("\n\nExample 2\n\n");

/* Skip heading in data file */

Vscanf("%*[^\n] ");

INIT_FAIL(fail);
exit_status = 0;

/* Problem parameters */

data.elo = 2.5;
data.ero = 0.25;
data.gamma = 1.4;
data.rlo = 1.0;
data.rro = 0.125;
comm.p = (Pointer)

itrace = 0;
itol = 1;
atol[0] = 0.005;
rtol[0] = 5e-4;

Vprintf(" gamma =%6.3f", data.gamma);
Vprintf(" elo =%6.3f", data.elo);
Vprintf(" ero =%6.3f", data.ero);
Vprintf(" rlo =%6.3f", data.rlo);
Vprintf(" rro =%6.3f\n\n", data.rro);
Vprintf(" npts = %4ld", npts);
Vprintf(" atol = %10.3e", atol[0]);
Vprintf(" rtol = %10.3e\n\n", rtol[0]);

/* Initialise mesh */

for (i = 0; i < npts; ++i) x[i] = i/(npts-1.0);

/* Initial values of variables */

init2(npde, npts, x, u, &comm);

xi[0] = 0.0;
ind = 0;
itask = 1;

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.25

for (i = 0; i < 30; ++i) algopt[i] = 0.0;

/* Theta integration */

algopt[0] = 2.0;
algopt[5] = 2.0;
algopt[6] = 2.0;

/* Max. time step */

algopt[12] = 0.005;

ts = 0.0;

Vprintf(" x APPROX d EXACT d APPROX v EXACT v APPROX p EXACT p\n");
for (it = 0; it < 2; ++it)

{
tout = 0.1*(it+1);

d03plc(npde, &ts, tout, d03plp, nmflx2, bndry2, u, npts, x,
ncode, d03pek, nxi, xi, neqn, rtol, atol, itol, Nag_TwoNorm,
Nag_LinAlgBand, algopt, rsave, lrsave, isave, lisave, itask,
itrace, 0, &ind, &comm, &saved, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03plc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\n t = %6.3f\n\n", ts);

/* Read exact data at output points */

Vscanf(" %*[^\n] ");
for (i = 1; i <= 8; ++i)

{
Vscanf("%lf", &UE(1, i));
Vscanf("%lf", &UE(2, i));
Vscanf("%lf", &UE(3, i));

}

/* Calculate density, velocity and pressure */

k = 0;
for (i = 29; i <= npts-14; i += 14)

{
++k;
d = U(1, i);
v = U(2, i) / d;
p = d*(data.gamma-1.0)*(U(3, i)/d - 0.5*v*v);

Vprintf("%7.4f %7.4f %7.4f %7.4f %7.4f %7.4f %7.4f\n",
x[i-1], d, UE(1,k), v, UE(2,k), p, UE(3,k));

}
}

Vprintf("\n");
Vprintf(" Number of integration steps in time = %6ld\n", isave[0]);
Vprintf(" Number of function evaluations = %6ld\n", isave[1]);
Vprintf(" Number of Jacobian evaluations =%6ld\n", isave[2]);
Vprintf(" Number of iterations = %6ld\n\n", isave[4]);

END:
if (algopt) NAG_FREE(algopt);
if (atol) NAG_FREE(atol);
if (rsave) NAG_FREE(rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE(u);

d03plc NAG C Library Manual

d03plc.26 [NP3645/7]

if (ue) NAG_FREE(ue);
if (x) NAG_FREE(x);
if (xi) NAG_FREE(xi);
if (isave) NAG_FREE(isave);

return exit_status;

}

static void init2(Integer npde, Integer npts, double *x, double *u,
Nag_Comm *comm)

{
Integer i, j;
struct user *data = (struct user *)comm->p;

j = 0;
for (i = 0; i < npts; ++i)

{
if (x[i] < 0.5) {

u[j] = data->rlo;
u[j+1] = 0.0;
u[j+2] = data->elo;

} else if (x[i] == 0.5) {
u[j] = 0.5*(data->rlo + data->rro);
u[j+1] = 0.0;
u[j+2] = 0.5*(data->elo + data->ero);

} else {
u[j] = data->rro;
u[j+1] = 0.0;
u[j+2] = data->ero;

}
j+=3;

}
return;

}

static void bndry2(Integer npde, Integer npts, double t, const double x[],
const double u[], Integer ncode, const double v[],
const double vdot[], Integer ibnd, double g[],
Integer *ires, Nag_Comm *comm)

{
struct user *data = (struct user *)comm->p;

if (ibnd == 0)
{

g[0] = U(1, 1) - data->rlo;
g[1] = U(2, 1);
g[2] = U(3, 1) - data->elo;

} else {
g[0] = U(1, npts) - data->rro;
g[1] = U(2, npts);
g[2] = U(3, npts) - data->ero;

}
return;

}

static void nmflx2(Integer npde, double t, double x, Integer ncode,
const double v[], const double uleft[],
const double uright[], double flux[], Integer *ires,
Nag_Comm *comm, Nag_D03_Save *saved)

{
char solver;
NagError fail;
struct user *data = (struct user *)comm->p;

INIT_FAIL(fail);

solver = ’R’;
if (solver == ’R’) {

/* ROE SCHEME */

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.27

d03puc(uleft, uright, data->gamma, flux, saved, &fail);

} else {

/* OSHER SCHEME */

d03pvc(uleft, uright, data->gamma, Nag_OsherPhysical,
flux, saved, &fail);

}

if (fail.code != NE_NOERROR)
{

Vprintf("Error from d03pvc.\n%s\n", fail.message);
}

return;
}

9.2 Program Data

None.

9.3 Program Results

d03plc Example Program Results

Example 1

npts = 141 atol = 1.000e-05 rtol = 2.500e-04

t = 0.500

x Approx u1 Exact u1 Approx u2 Exact u2

0.0000 -0.0432 -0.0432 0.0432 0.0432
0.1429 -0.0220 -0.0220 -0.0001 -0.0000
0.2857 -0.0200 -0.0199 -0.0232 -0.0231
0.4286 -0.0123 -0.0123 -0.0175 -0.0176
0.5714 0.0248 0.0245 0.0227 0.0224
0.7143 0.0835 0.0827 0.0833 0.0825
0.8571 0.1043 0.1036 0.1046 0.1039
1.0000 -0.0010 -0.0001 -0.0008 0.0001

Number of integration steps in time = 158
Number of function evaluations = 1154
Number of Jacobian evaluations = 16
Number of iterations = 413

Example 2

gamma = 1.400 elo = 2.500 ero = 0.250 rlo = 1.000 rro = 0.125

npts = 141 atol = 5.000e-03 rtol = 5.000e-04

x APPROX d EXACT d APPROX v EXACT v APPROX p EXACT p

t = 0.100

0.2000 1.0000 1.0000 -0.0000 0.0000 1.0000 1.0000
0.3000 1.0000 1.0000 -0.0000 0.0000 1.0000 1.0000
0.4000 0.8668 0.8775 0.1665 0.1527 0.8188 0.8327
0.5000 0.4299 0.4263 0.9182 0.9275 0.3071 0.3031
0.6000 0.2969 0.2656 0.9274 0.9275 0.3028 0.3031
0.7000 0.1250 0.1250 0.0000 0.0000 0.1000 0.1000
0.8000 0.1250 0.1250 -0.0000 0.0000 0.1000 0.1000
0.9000 0.1250 0.1250 -0.0000 0.0000 0.1000 0.1000

t = 0.200

d03plc NAG C Library Manual

d03plc.28 [NP3645/7]

0.2000 1.0000 1.0000 -0.0000 0.0000 1.0000 1.0000
0.3000 0.8718 0.8775 0.1601 0.1527 0.8253 0.8327
0.4000 0.6113 0.6029 0.5543 0.5693 0.5022 0.4925
0.5000 0.4245 0.4263 0.9314 0.9275 0.3014 0.3031
0.6000 0.4259 0.4263 0.9277 0.9275 0.3030 0.3031
0.7000 0.2772 0.2656 0.9272 0.9275 0.3031 0.3031
0.8000 0.2657 0.2656 0.9276 0.9275 0.3032 0.3031
0.9000 0.1250 0.1250 -0.0000 0.0000 0.1000 0.1000

Number of integration steps in time = 170
Number of function evaluations = 411
Number of Jacobian evaluations = 1
Number of iterations = 2

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

- 0 . 0 4

- 0 . 0 2

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

x

U 1

U 2

×××
×××

××××
××××

×××××××
××××××××××××××××××××××××××××××××

××××××
××××

×××
×××

×××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
××

×××
××××

×××××××××××××××
×
×
×
×
×
×
×
×
×
×
×
×
×

×××
××××

×××
×××

×××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
××

××
×××

××××
×××××××××××××××

×
×
×
×
×
×
×
×
×
×
×
×
×

Figure 1
Solution to Example 1

d03 – Partial Differential Equations d03plc

[NP3645/7] d03plc.29

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

x

DE NS I T Y

VE L OC I T Y

P R E S S UR E

×××
×
×
×
×××××××××××××××××××××

×

×
××××××××××××××××××××

×××××××××××××××××××××××××××××××××××××
××

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
××

××
×

×

×

××××××××××××××××××××

××××××××××××××××××××××××××××××××××××××
×
×
×
×
×
×
×
×
×
×
×
××

×

×
××××××××××××××××××××

Figure 2
Solution to Example 2

d03plc NAG C Library Manual

d03plc.30 (last) [NP3645/7]

	d03plc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	npde
	ts
	tout
	pdedef
	npde
	t
	x
	u
	ux
	ncode
	v
	vdot
	p
	c
	d
	s
	ires
	comm

	numflx
	npde
	t
	x
	ncode
	v
	uleft
	uright
	flux
	ires
	comm
	saved

	bndary
	npde
	npts
	t
	x
	u
	ncode
	v
	vdot
	ibnd
	g
	ires
	comm

	u
	npts
	x
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	ucpt
	r
	ires
	comm

	nxi
	xi
	neqn
	rtol
	atol
	itol
	norm
	laopt
	algopt
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_4
	NE_ENUM_INT
	NE_ACC_IN_DOUBT
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_ITER_FAIL
	NE_NOT_STRICTLY_INCREASING
	NE_REAL_2
	NE_REAL_ARRAY
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ZERO_WTS
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_NOT_WRITE_FILE
	NE_NOT_CLOSE_FILE
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

